
An Open Source Tool for Partial Parsing and
Morphosyntactic Disambiguation?

Adam Przepiórkowski and Aleksander Buczyński

Institute of Computer Science
Polish Academy of Sciences,

Warsaw, Poland
adamp@ipipan.waw.pl, olekb@ipipan.waw.pl

http://nlp.ipipan.waw.pl/

Abstract. This article presents a formalism and an open source im-
plementation of a new tool for simultaneous partial parsing and mor-
phosyntactic disambiguation and correction. We argue that, contrary to
the common pipeline approach, where morphosyntactic tagging is fully
accomplished before shallow or partial parsing, both tasks are best ap-
proached in parallel. This has been suggested before, and formalisms
which allow for the interweaving of partial parsing and morphosyntactic
disambiguation have been proposed. Our approach is novel in that a fully
uniform formalism is presented, and a single grammar rule may contain
structure-building operations, as well as morphosyntactic correction and
disambiguation operations. The formalism has been implemented in Java
and is now available under the GNU General Public License.

1 Introduction

Two observations motivate the work described here. First, morphosyntactic dis-
ambiguation and shallow parsing inform each other and should be performed in
parallel, rather than in sequence. Second, morphosyntactic disambiguation and
shallow parsing rules often implicitly encode the same linguistic intuitions, so a
formalism is needed which would allow to encode disambiguation and structure-
building instructions in a single rule.

The aim of this paper is to present a new formalism and tool, called Shallow
Parsing and Disambiguation Engine, initially abbreviated to “SPADE”, but —
because of the existence of an earlier parsing system called SPADE1 — now
abbreviated to “♠” (Unicode character 0x2660) and to the more international
acronym “Spejd”2, pronounced the same way as spade. The formalism is essen-
tially a cascade of regular grammars, where (currently) each regular grammar is
? This article is an improved and extended version of [1] and it is up to date as of 7th

November 2007.
1 Sentence-level PArsing for DiscoursE, http://www.isi.edu/licensed-sw/spade/.
2 Polish: Składniowy Parser (Ewidentnie Jednocześnie Dezambiguator), German:

Syntaktisches Parsing Entwicklungsystem Jedoch mit Disambiguierung, French:
Super Parseur Et Jolie Désambiguïsation.

expressed by a — perhaps very complex — single rule. The rules specify, both,
morphosyntactic disambiguation/correction operations and structure-building
operations, but, unlike in pure unification-based formalisms, these two types
of operations are decoupled, i.e., a rule may be adorned with instructions to the
effect that a structure is built even when the relevant unification fails.

After a brief presentation of some related work in §2, we present the formalism
in §3 and its implementation in §4, with §5 concluding the paper.

2 Background and Related Work

Syntactic parsers differ in whether they assume morphosyntactically disam-
biguated or non-disambiguated input: deep parsing systems based on unification
usually allow for ambiguous input, while shallow (or partial) parsers usually ex-
pect fully disambiguated input. Some partial parsing systems (e.g., [2], [3], [4],
[5]) allow for the interweaving of disambiguation and parsing.

[6] present a unified formalism for disambiguation and dependency parsing.
Since dependency parsing in that approach is fully reductionistic, i.e., it assumes
that all words have all their possible syntactic roles assigned in the lexicon and
it simply rejects some of these roles, that formalism is basically a pure disam-
biguation formalism. In contrast, the formalism described below is constructive:
it groups constituents into larger constituents.

Previous work that comes closest to our aims is reported in [7, 8] and [9],
where INTEX local grammars [10], normally used for disambiguation, are the
basis for a system that recognises various kinds of noun phrases and handles
agreement within them. However, it is not clear whether these extensions lead
to a lean formalism comparable to the formalism presented below.

3 Formalism

3.1 The Basic Format

Each rule consists of up to 5 parts marked as Rule, Left, Match, Right and
Eval:

Rule: "some rule id here"
Left: ;
Match: [pos~~"prep"][base~"co|kto"];
Right: ;
Eval: unify(case,1,2); group(PG,1,2);

The rule means: 1) find a sequence of two tokens3 such that the first token
is an unambiguous preposition ([pos~~prep]), and the second token is a form
3 A terminological note is in order, although its full meaning will become clear only

later: by segment we understand the smallest interpreted unit, i.e., a sequence of
characters together with its morphosyntactic interpretations (lemma, grammatical

of the lexeme co ‘what’ or kto ‘who’ ([base~"co|kto"]); 2) if there exist
interpretations of these two tokens with the same value of case, reject all inter-
pretations of these tokens which do not agree in case (cf. unify(case,1,2)); 3)
mark thus identified sequence as a syntactic group (group) of type PG (prepo-
sitional group), whose syntactic head is the first token (1) and whose semantic
head is the second token (2; cf. group(PG,1,2)). Left and Right parts of a rule,
specifying the context of the match, may be empty; in such a case they may be
omitted. The other fields, i.e., Rule, Match and Eval are obligatory.

Note that, apart from Rule, all fields end in a semicolon, and also particular
actions in Eval are separated by semicolons. Comments may be added to rules,
starting with the hash character “#”, and fields may be split across lines, so a
rule fully equivalent to the rule above may look as follows:

a trivial rule for the purpose of this article only
Rule: "some rule id here"
Match: [pos~~"prep"] # a sure preposition

[base~"co|kto"]; # a form of CO or KTO
Eval: unify(case,1,2); # must agree in case

group(PG,1,2); # Prepositional Group

Although the Rule part, specifying the identifier of the rule, is obligatory, we
will omit it below in the interest of brevity.

3.2 Matching (Left, Match, Right)

The contents of parts Left, Match and Right have the same syntax and seman-
tics. Each of them may contain a sequence of the following specifications: 1)
token specification, e.g., [pos~~"prep"] or [base~"co|kto"]; these specifi-
cations adhere to segment specifications of the Poliqarp [11] corpus search en-
gine as defined in [12];4 in particular, a specification like [pos~~"subst"] says

class, grammatical categories); syntactic word is a non-empty sequence of segments
and/or syntactic words marked as an entity by the action word; token is a segment
or a syntactic word; syntactic group (in short: group) is a non-empty sequence of
tokens and/or syntactic groups, marked as an entity by the action group; syntactic
entity is a token or a syntactic group.

4 One difference between the query language of Poliqarp and the language of to-
ken specifications assumed here is that here, 1) multiple conditions within a sin-
gle token specification may be combined only with the conjunction operator, while
Poliqarp also allows disjunction, 2) conjunction is expressed by the operator &&, as
in [case~nom && number~sg], as opposed to Poliqarp’s &, which reflects a subtle
difference in the semantics of these operators (the specification just given says that
there must be an interpretation which is simultaneously nominative and singular),
while the corresponding Poliqarp query [case~nom & number~sg] would find tokens
which have a nominative interpretation and a — possibly different — singular in-
terpretation), 3) negation may only be used in negated versions of the operators ~
and ~~, i.e., !~ and !~~, while in Poliqarp negation may outscope conjunction and
disjunction.

that all morphosyntactic interpretations of a given token are nominal (substan-
tive), while [pos~"subst"] means that there exists a nominal interpretation of
a given token; 2) group specification, extending the Poliqarp query language
as proposed in [13], e.g., [semh=[pos~~"subst"]] specifies a syntactic group
whose semantic head is a token whose all interpretations are substantive (i.e.,
nominal); 3) one of the following specifications: ns: no space; sb: sentence
beginning; se: sentence end; 4) an alternative of such sequences in parentheses,
e.g., ([pos~~"subst"] | [synh=[pos~~"subst"]] se). Additionally, 5) each
such specification may be modified with one of the three regular expression
quantifiers: ?, * and +.

An example of a possible value of Left, Match or Right might be:

[pos~~"adv"] ([pos~~"prep"] [pos~"subst"]
ns? [pos~"interp"]? se | [synh=[pos~~"prep"]])

The meaning of this specification is: find an adverb followed by a prepositional
group, where the prepositional group is specified as either a sequence of an
unambiguous preposition and a possible noun at the end of a sentence, or an
already recognised prepositional group.

3.3 Conditions and Actions (Eval)

The Eval part contains a sequence of Prolog-like predicates evaluating to true or
false; if a predicate evaluates to false, further predicates are not evaluated and
the rule is aborted. Almost all predicates have side effects, or actions. In fact,
many of them always evaluate to true, and they are ‘evaluated’ solely for their
side effects. In the following, we will refer to those predicates which may have
side effects as actions, and to those which may evaluate to false as conditions.

There are two types of actions: morphosyntactic and syntactic. While mor-
phosyntactic actions delete or add some interpretations of specified tokens, syn-
tactic actions group entities into syntactic words (consecutive segments which
syntactically behave like single words, e.g., multi-segment named entities, etc.)
or syntactic groups.

Natural numbers in predicates refer to tokens matched by the specifications in
Left, Match and Right. These specifications are numbered from 1, counting from
the first specification in Left to the last specification in Right. For example, in
the following rule, there should be case agreement between the adjective specified
in the left context and the adjective and the noun specified in the right context
(cf. unify(case,1,4,5)), as well as case agreement (possibly of a different case)
between the adjective and noun in the match (cf. unify(case,2,3)).

Left: [pos~~adj];
Match: [pos~~adj][pos~~subst];
Right: [pos~~adj][pos~~subst];
Eval: unify(case,2,3); unify(case,1,4,5);

Currently the following predicates are defined:
agree(<cat> ...,<tok>,...) — a condition checking if the grammatical

categories (<cat> ...) of tokens specified by subsequent numbers (<tok>,...)
agree. It takes a variable number of arguments: the initial arguments, such as
case or gender, specify the grammatical categories that should simultaneously
agree, so the condition agree(case gender,1,2) is stronger than the sequence
of conditions: agree(case,1,2), agree(gender,1,2). Subsequent arguments
of agree are natural numbers referring to entity specifications that should be
taken into account when checking agreement.

unify(<cat> ...,<tok>,...) — an action which leaves only those inter-
pretations of tokens <tok>,... which agree in <cat> ... in case such agreement
is possible (i.e., in case agree(<cat> ...,<tok>,...) evaluates to true), and
does nothing otherwise.

delete(<cond>,<tok>,...) — delete all interpretations of specified tokens
matching the specified condition (for example delete(case~"gen|acc",1)).

leave(<cond>,<tok>,...) — leave only the interpretations matching the
specified condition.

add(<tag>,<base>,<tok>) — add to the specified token the interpretation
<tag> with the base form <base>. The <tag> specification may be a specific tag,
e.g., subst:sg:nom:f, or it may contain abbreviations of the form <cat>*, which
expand to all possible values of the given category. For example, given the tagset
of Polish described in [12], the action add(subst:number*:case*:n,"emu",1)
adds 14 interpretations to the token referred to by 1, all with the base form emu,
corresponding to the 2 grammatical numbers and 7 grammatical cases in Polish.

set(<tag>,<base>,<tok>) — delete all interpretations of the specified token
and set the interpretation(s) of that token as <tag> with the base form <base>.
Equivalent to the sequence: delete(,<tok>); add(<tag>,<base>,<tok>).

word(<tag>,<base>) — create a new syntactic word comprising all tokens
matched by the Match specification, and assign it the given tag and base form.
The sequence <tag>,<base> may be repeated any number of times (separated
by semicolons), so, e.g., the abbreviation fr. may be turned into a syntactic
word representing any of the 2×7 number/case values of the noun frank ‘franc’
(the currency), or any of the 2×7×5 number/case/gender values of the (positive
degree) adjective francuski ‘French’:

Match: [orth~"fr"] ns [orth~"\."];
Eval: word(subst:number*:case*:m3, "frank";

adj:number*:case*:gender*:pos, "francuski");

<base> may be a specific string, as "frank" or "francuski" in the rules above,
or — more generally — it may be a concatenation of strings, where each string is
given directly or is specified as <n>.orth (the orthographic form of the token cor-
responding to the nth specification) or <n>.base (a base form of such a token).5
For example, the following rule, finding a syntactic word of class liczba ‘number’,
5 In case of <n>.base, the assumption is that all interpretations of the nth token

have the same base form, so it does not matter which one is taken. If the token has

creates the base form of this syntactic word by concatenating 4 strings: the or-
thographic form of the token matched by [orth~"[0-9]+"], the space (cf. " "),
and the orthographic forms matching the specifications [orth~"mln|mld"] and
(ns? [orth~"."])?, respectively.

Match: [orth~"[0-9]+"] [orth~"mln|mld"] (ns [orth~"."])?;
Eval: word(liczba, 1.orth " " 2.orth 3.orth);

Since such operations are frequent, the special base form specification 0.orth
takes all orthographic forms of all tokens in the match and concatenates them,
taking into account information about no spaces between particular tokens, so
a rule equivalent to the one above would be:

Match: [orth~"[0-9]+"] [orth~"mln|mld"] (ns [orth~"."])?;
Eval: word(liczba, 0.orth);

word(<tok>,<tag_modification>,<base_modification>) — create a new
syntactic word comprising all tokens matched by the Match specification, by
taking all interpretations of the token <tok> and modifying their tags and
bases according to <tag_modification> and <base_modification>, respec-
tively. In the simplest case, a <..._modification> may be empty and the
corresponding tag or base form is copied to the new interpretation. If not
empty, <base_modification> may be a concatenation of specific strings and
the special specification base; for example, word(1„"nie " base) creates base
forms by adding the prefix “nie ” to the base forms of the first token matched.
On the other hand, <tag_modification> may contain the value of a gram-
matical category; for any interpretation of the token specified by <tok> whose
grammatical class allows for the grammatical category with value specified by
<tag_modification>, this value is inserted into that interpretation. For ex-
ample, the following rule, specifying that the left context is not the negative
marker nie (or Nie), may be used to construct simple syntactic words consisting
of single verbs, where the verbal interpretations are modified by adding the aff
(affirmative) value of the (optional) negation grammatical class:

Left: [orth!~"[Nn]ie"];
Match: [pos~~"praet|fin|impt|imps|inf"];
Eval: word(2, aff,);

For both versions of word, the orthographic form of the newly created syntac-
tic word is always a simple concatenation of all orthographic forms of all tokens
immediately contained in that syntactic word, taking into account information
about space or its lack between consecutive tokens.

group(<type>,<synh>,<semh>) — create a new syntactic group with syn-
tactic head and semantic head specified by numbers. The <type> is the categorial

different base forms, this operation is indeterminate, as any of those base forms may
be taken.

type of the group (e.g., PG), while <synh> and <semh> are references to appro-
priate token specifications in the Match part. For example, the following rule
may be used to create a numeral group, syntactically headed by the numeral
and semantically headed by the noun:6

Left: [pos~~"prep"];
Match: [pos~~"num"] [pos~~"adj"]* [pos~~"subst"];
Eval: group(NumG,2,4);

Of course, rules should be constructed in such a way that references <synh>
and <semh> refer to specifications of single entities, e.g., to ([pos~~"subst"] |
[synh=[pos~~"subst"]]) but not, say, to [case~~"nom"]+

In all these predicates, a reference to a token specification takes into account
all tokens matched by that specification, so, e.g., in case 1 refers to the speci-
fication [pos~~adj]*, the action unify(case,1) means that all the adjectives
matched must be rid of all interpretations whose case is not shared by all of
them.

Moreover, the numbers in all predicates are interpreted as referring to tokens;
when a reference is made to a syntactic group, the action is performed on the
syntactic head of that group. For example, assuming that the following rule finds
a sequence of a nominal segment, a multi-segment syntactic word and a nominal
group, the action unify(case,1) will result in the unification of case values of
the first segment, the syntactic word as a whole and the syntactic head of the
group.

Match: ([pos~~"subst"]|[synh=[pos~~"subst"]])+;
Eval: unify(case,1);

The only exception to this rule is the semantic head parameter in the group
action; when it references a syntactic group, the semantic, not syntactic, head is
inherited.

4 Implementation

Since the formalism described above is novel and to some extent still evolving,
its implementation had to be not only reasonably fast, but also easy to modify
and maintain. This section briefly presents such an implementation.

4.1 Input and Output

The parser implementing the specification above currently takes as input the
version of the XML Corpus Encoding Standard [14] assumed in the IPI PAN
Corpus of Polish (http://korpus.pl/; [12]). Rules may modify the input in
two possible ways. First, morphosyntactic actions may reject certain interpreta-
tions of certain tokens; such rejected interpretations are marked by the attribute
6 A rationale for distinguishing these two kinds of heads is given in [13].

disamb_sh="0" added to <lex> elements representing these interpretations. Sec-
ond, syntactic actions modify the input by adding <syntok> and <group> ele-
ments, marking syntactic words and groups.

For example, the rule given at the top of §3.1 above may be applied to the
following input sequence (slightly simplified in irrelevant aspects; e.g., the token
co actually has 3 more interpretations, apart from the two given below) of two
tokens Po co ‘why, what for’, lit. ‘for what’, where Po is a preposition which
either combines with an accusative argument or with a locative argument, while
co is ambiguous between, inter alia, a nominative/accusative noun:

<tok id="tA5">
<orth>Po</orth>
<lex><base>po</base>

<ctag>prep:acc</ctag></lex>
<lex><base>po</base>

<ctag>prep:loc</ctag></lex>
</tok>
<tok id="tA6">
<lex><base>co</base>

<ctag>subst:sg:nom:n</ctag></lex>
<lex><base>co</base>

<ctag>subst:sg:acc:n</ctag></lex>
</tok>

The result should have the following effect (bits added by the rule are
emphasised):

<group type="PG" synh="tA5" semh="tA6">
<tok id="tA5">
<orth>Po</orth>
<lex><base>po</base>

<ctag>prep:acc</ctag></lex>
<lex disamb_sh="0" ><base>po</base>

<ctag>prep:loc</ctag></lex>
</tok>
<tok id="tA6">
<lex disamb_sh="0" ><base>co</base>

<ctag>subst:sg:nom:n</ctag>
</lex>
<lex><base>co</base>

<ctag>subst:sg:acc:n</ctag></lex>
</tok>
</group>

4.2 Algorithm Overview

During the initialisation phase, the parser loads the external tagset specification
and the rules, and converts the latter to a set of compiled regular expressions

and actions/conditions. Then, input files are parsed one by one (for each input
file a corresponding output file containing parsing results is created).

To reduce memory usage, parsing is done by chunks defined in the input files,
such as sentences or paragraphs. In the remainder of the paper we assume the
chunks are sentences.

The parser concurrently maintains two representations for each sentence:
1) an object-oriented syntactic entity tree, used for easy manipulation of enti-
ties (for example, for disabling certain interpretations or creating new syntactic
words) and preserving all necessary information to generate the final output;
2) a compact string for quick regexp matching, containing only the information
important for the rules which have not been applied yet.

Tree Representation The entity tree is initialised as a flat (one level deep)
tree with all leaves (segments and possibly special entities, like no space, sen-
tence beginning, sentence end) connected directly to the root. Application of a
syntactic action means inserting a new node (syntacting word or group) to the
tree, between the root and some of the existing nodes. As the parsing proceeds,
the tree changes its shape: it becomes deeper and narrower.

Morphosyntactic actions do not change the shape of the tree, but also reduce
the string representation length by deleting from that string certain interpreta-
tions. The interpretations are preserved in the tree to produce the final output,
but are not relevant to further stages of parsing.

String Representation The string representation is a compromise between
XML and binary representation, designed for easy, fast and precise matching,
with the use of existing regular expression libraries.7 The representation de-
scribes the top level of the current state of the sentence tree, including only the
information that may be used by rule matching. For each child of the tree root,
the following information is preserved in the string: type (token / group / spe-
cial) and identifier (for finding the entity in the tree in case an action should be
applied to it). The ensuing part of the string depends on the type of the child:
for a token, it is orthographic forms and a list of interpretations; for a group —
number of heads of the group and lists of interpretations for the syntactic and
semantic head.

Because the tagset used in the IPI PAN Corpus is intended to be human-
readable, the morphosyntactic tags are fairly descriptive and, as a result, they
are rather long. To facilitate and speed up pattern matching, tags are converted
to strings of fixed length. In such a string, each character corresponds to one
morphological category from the tagset (first part of speech, then number, case,
7 Two alternatives to this approach were considered: 1) building a custom finite state

automata on binary representation: our previous experience shows that while this
may lead to an extremely fast search engine, it is at the same time costly to main-
tain; 2) operating directly on XML files: the strings to search would be longer, and
matching would be more complex (especially for requirements including negation);
a prototype of this kind was written in Perl and parsing times were not acceptable.

gender, etc.) as, for example, in the Czech positional tag system [15]. The char-
acters — upper- and lowercase letters, or 0 (zero) for categories non-applicable
to a given part of speech — are assigned automatically, on the basis of the ex-
ternal tagset definition read at initialisation. A few possible correspondences are
presented in Table 1.

IPI PAN tag fixed length tag
adj:pl:acc:f:sup UBDD0C0000000
conj B000000000000
fin:pl:sec:imperf bB00B0A000000
subst:pl:nom:m1 NBAA000000000

Table 1. Examples of tag conversion between human-readable and inner positional
tagset.

Matching (Left, Match, Right) The conversion from the Left, Match and
Right parts of the rule to a regular expression over the string representation is
fairly straightforward. Two exceptions — regular expressions as morphosyntactic
category values and the distinction between existential and universal quantifica-
tion over interpretations — are described in more detail below.

First, the rule might be looking for a token whose grammatical category is
described by a regular expresion. For example, [gender~~"m."] should match
personal masculine (also called virile; m1), animal masculine (m2), and inani-
mate masculine (m3) tokens; [pos~~"ppron[123]+|siebie"] should match all
pronouns (ppron12, i.e., first or second person personal pronouns, ppron3, i.e.,
third person personal pronouns, or forms of the reflexive/reciprocal pronoun
siebie, which happens to have a separate grammatical class in the IPI PAN
Corpus, called siebie); [pos!~~"adj.*"] should match all segments except for
(various classes of) adjectives; etc. Because morphosyntactic tags are converted
to fixed length representations, the regular expressions also have to be converted
before compilation.

To this end, the regular expression is matched against all possible values of
the given category. Since, after conversion, every value is represented as a single
character, the resulting regexp can use square bracket notation for character
classes to represent the range of possible values.

The conversion can be done only for attributes with values from a well-
defined, finite set. Since we do not want to assume that we know all the text
to parse before the compilation of the rules, we assume that the dictionary is
infinite. Therefore, orth and base requirements are not converted. Requirements
with negated orth and base have to use the zero-width negative lookahead
construct.

Second, a segment may have many interpretations and sometimes a rule may
apply only when all the interpretations meet the specified condition (for example

[pos~~"subst"]), while in other cases one matching interpretation should be
enough to trigger the rule ([pos~"subst"]).

In the string interpretation, < and > were chosen as convenient separa-
tors of interpretations and entities, because they should not appear in the
input data (they have to be escaped in XML). In particular, each fixed
length tag representation is preceded by <. Assuming that nominal subst
tags are translated into fixed length string starting with an N, the univer-
sal specification [pos~~"subst"] will be translated into the regular expression
(<N[^<>]+)+, while the existential specification [pos~"subst"] will be trans-
lated into (<[^<>]+)*(<N[^<>]+)(<[^<>]+)*.

Of course, a combination of existential and universal requirements is a valid
requirement as well, for example: [pos~~"subst" case~"gen|acc"] (all inter-
pretations noun, at least one of them in genitive or accusative case) should trans-
late to: (<N[^<>]+)*(<N.[BD][^<>]+)(<N[^<>]+) (if genitive and accusative
translate to B and D).

Conditions and Actions (Eval) As described in §3.3, when a match is found,
the parser evaluates a sequence of predicates connected to the given rule. Each
predicate may be a condition with no side effects involved, a morphosyntactic
action or a syntactic action. The parser executes the sequence until it encounters
a predicate which evaluates to false (for example, unification of cases fails).

The actions affect both the tree and the string representation of the parsed
sentence. The tree is updated instantly (the cost of the update is linear with
respect to the match length or the number of interpretations of tokens involved,
depending on the action type), but the string update (cost linear to sentence
length) is delayed until it is really needed (at most once per rule).

4.3 Efficiency

The system described above has been implemented in Java. When given a set
of 167 rules of varying complexity, ♠ processed a 34MB XML file containing
over 174 thousand segments (almost 16 thousand sentences) in about 4 minutes,
which gives the average of about 700 words per second (as measured on an Intel
Core2Duo T7200 laptop). In the process, over 21 thousand syntactic words and
over 22 thousand syntactic groups were marked. While parsing times increase
with the size of the grammar, they are still acceptable, given the intended use
of the system for the off-line shallow parsing of a corpus.

4.4 Availability

The tool described here has just become available under the GNU General Public
License (version 2) and the current paper is the official article announcing the
public availability of this tool. In case it is accepted to CICLing 2008, this section
will briefly describe the release and it will give the URL from which ♠ may be
downloaded (now withheld for the reasons of anonymity).

5 Conclusion

The system presented above, ♠, is perhaps unique in allowing the grammar de-
veloper to encode morphosyntactic disambiguation and shallow parsing instruc-
tions in the same unified formalism, possibly in the same rule. The formalism
is more flexible than either the usual shallow parsing formalisms, which assume
disambiguated input, or the usual unification-based formalisms, which couple
disambiguation (via unification) with structure building. While a rule set is cur-
rently prepared for the parsing of the IPI PAN Corpus of Polish, ♠ is fully
language-independent and we hope it will also be useful in the processing of
other languages.

References

1. Przepiórkowski, A., Buczyński, A.: ♠: Shallow Parsing and Disambiguation Engine.
In Vetulani, Z., ed.: Proceedings of the 3rd Language & Technology Conference,
Poznań, Poland (2007)

2. Neumann, G., Braun, C., Piskorski, J.: A divide-and-conquer strategy for shallow
parsing of German free texts. In: Proceedings of the 6th Applied Natural Language
Processing Conference, Seatle, WA, ACL (2000) 239–246

3. Marimon, M., Porta, J.: PoS disambiguation and partial parsing bidirectional
interaction. [16]

4. Aït-Mokhtar, S., Chanod, J.P., Roux, C.: Robustness beyond shallowness: incre-
mental deep parsing. Natural Language Engineering 8 (2002) 121–144

5. Schiehlen, M.: Experiments in German noun chunking. In: Proceedings of the 19th
International Conference on Computational Linguistics (COLING2002), Taipei
(2002)

6. Karlsson, F., Voutilainen, A., Heikkilä, J., Anttila, A., eds.: Constraint Gram-
mar: A Language-Independent System for Parsing Unrestricted Text. Mouton de
Gruyter, Berlin (1995)

7. Nenadić, G., Vitas, D.: Formal model of noun phrases in Serbo-Croatian. BULAG
23 (1998) Presses de l’Université de Franche-Comté, Besançon, France.

8. Nenadić, G., Vitas, D.: Using local grammars for agreement modeling in highly
inflective languages. In: Proceedings of Text, Speech and Dialogue (TSD) 1998.
(1998) 91–96

9. Nenadić, G.: Local grammars and parsing coordination of nouns in Serbo-Croatian.
In Sojka, P., Kopeček, I., Pala, K., eds.: Text, Speech and Dialogue: Third Interna-
tional Workshop, TSD 2000, Brno, Czech Republic, September 2000. Volume 1902
of Lecture Notes in Artificial Intelligence., Berlin, Springer-Verlag (2000) 57–62

10. Silberztein, M.: INTEX: a corpus processing system. In: Fifteenth International
Conference on Computational Linguistics (COLING ’94), Kyoto, Japan (1994)
579–583

11. Janus, D., Przepiórkowski, A.: Poliqarp: An open source corpus indexer and search
engine with syntactic extensions. In: Proceedings of ACL 2007 Demo and Poster
Sessions. (2007) 85–88

12. Przepiórkowski, A.: The IPI PAN Corpus: Preliminary version. Institute of Com-
puter Science, Polish Academy of Sciences, Warsaw (2004)

13. Przepiórkowski, A.: On heads and coordination in valence acquisition. In Gelbukh,
A., ed.: Computational Linguistics and Intelligent Text Processing (CICLing 2007).
Lecture Notes in Computer Science, Berlin, Springer-Verlag (2007) 50–61

14. Ide, N., Bonhomme, P., Romary, L.: XCES: An XML-based standard for linguistic
corpora. [16] 825–830

15. Hajič, J., Hladká, B.: Probabilistic and rule-based tagger of an inflective language
- a comparison. In: Proceedings of the 5th Applied Natural Language Processing
Conference, Washington, DC, ACL (1997) 111–118

16. ELRA: Proceedings of the Third International Conference on Language Resources
and Evaluation, LREC2000. In: Proceedings of the Third International Conference
on Language Resources and Evaluation, LREC2000, Athens, ELRA (2000)

