Locked History Actions

Diff for "benchmarks"

Differences between revisions 20 and 21
Revision 20 as of 2016-10-21 15:04:03
Size: 3519
Comment:
Revision 21 as of 2016-10-27 23:12:22
Size: 3556
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
## page was renamed from Benchmarks

Benchmarks

This page documents performance of various NLP systems for Polish.

Morphological analysis

  • : Morfeusz, Concraft/WCRFT, Spejd, Dependency Parser, TIMEX/Nerf,

POS tagging

Shallow parsing

Dependency parsing

Deep parsing

Word sense disambiguation

Named entity recognition

Sentiment analysis

Mention detection

Precision, recall and F-measure are calculated on Polish Coreference Corpus data with two alternative mention detection scores:

  • EXACT: score of exact boundary matches (an automatic and a manual mention match if they have exactly the same boundaries; in other words, they consist of the same tokens)
  • HEAD: score of head matches (we reduce the automatic and the manual mentions to their single head tokens and compare them).

System name

Short description

Main publication

License

EXACT

HEAD

P

R

F

P

R

F

Mention Detector

Collects mention candidates from available sources – morphosyntactical, shallow parsing, named entity and/or zero anaphora detection tools

Ogrodniczuk M., Głowińska K., Kopeć M., Savary A., Zawisławska M. Coreference in Polish: Annotation, Resolution and Evaluation, chapter 10.6. Walter De Gruyter, 2015.

CC BY 3

66.79%

67.21%

67.00%

88.29%

89.41%

88.85%

Coreference resolution

As there is still no consensus about the single best coreference resolution metrics, CoNLL measure is used (average of MUC, B3 and CEAFE F-measure values). For end-to-end systems CoNLL-2011 shared task-based approach is used, so two result calculation strategies are presented:

  • INTERSECT: consider only correct system mentions (i.e. the intersection between gold and system mentions)
  • TRANSFORM: unify system and gold mention sets using the following procedure for twinless mentions (without a corresponding mention in the second set):
    1. insert twinless gold mentions into system mention set as singletons
    2. remove twinless singleton system mentions
    3. insert twinless non-singletion system mentions into gold set as singletons.

The results are produced on Polish Coreference Corpus data.

System name

Short description

Main publication

License

GOLD

EXACT INTERSECT

EXACT TRANSFORM

HEAD INTERSECT

HEAD TRANSFORM

Ruler

Rule-based

Ogrodniczuk M., Kopeć M. End-to-end coreference resolution baseline system for Polish. In Z. Vetulani (ed.), Proceedings of the 5th Language & Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, pp. 167–171, Poznań, Poland, 2011.

CC BY 3

73.40%

78.54%

66.55%

76.27%

70.11%

Bartek 3

Statistical

Kopeć M., Ogrodniczuk M. Creating a Coreference Resolution System for Polish. In Proceedings of the 8th International Conference on Language Resources and Evaluation, LREC 2012, pp. 192–195, ELRA.

CC BY 3

78.41%

80.86%

68.96%

78.58%

72.15%

Summarization